Haematopoietic stem cell migration to the ischemic damaged kidney is not altered by manipulating the SDF-1/CXCR4-axis
نویسندگان
چکیده
BACKGROUND Haematopoietic stem cells (HSC) have been shown to migrate to the ischemic kidney. The factors that regulate the trafficking of HSC to the ischemic damaged kidney are not fully understood. The stromal cell-derived factor-1 (SDF-1)/CXCR4-axis has been identified as the central signalling axis regulating trafficking of HSC to the bone marrow. Therefore, we hypothesized that SDF-1/CXCR4 interactions are implicated in the migration of HSC to the injured kidney. METHODS HSC were isolated from mouse bone marrow and labelled with a cell tracker. Acceptor mice were subjected to unilateral ischemia and received HSC intravenously directly after reperfusion. In addition, in separate groups of acceptor mice, endogenous SDF-1 or HSC-associated CXCR4 was blocked or kidneys were injected with SDF-1. RESULTS Exogenous HSC could be detected in the tubules and interstitium of the kidney 24 h after ischemic injury. Importantly, the amount of HSC in the ischemic kidney was markedly higher compared to the contralateral kidney. Neutralizing endogenous SDF-1 or HSC-associated CXCR4 did not prevent the migration of HSC. No increase in the number of labelled HSC could be observed after local administration of SDF-1, as was also determined in bilateral kidney ischemia. CONCLUSION In conclusion, systemically administered HSC preferentially migrate to the ischemic injured kidney. This migration could not be prevented by blocking the SDF-1/CXCR4-axis or increased after local administration of SDF-1.
منابع مشابه
SDF-1α/CXCR4 Axis Mediates The Migration of Mesenchymal Stem Cells to The Hypoxic-Ischemic Brain Lesion in A Rat Model
OBJECTIVE Transplantation of mesenchymal stem cells (MSCs) can promote functional recovery of the brain after hypoxic-ischemic brain damage (HIBD). However, the mechanism regulating MSC migration to a hypoxic-ischemic lesion is poorly understood. Interaction between stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXC chemokine receptor 4 (CXCR4) is crucial for homing and migrat...
متن کاملThe Role of SDF-1-CXCR4/CXCR7 Axis in the Therapeutic Effects of Hypoxia-Preconditioned Mesenchymal Stem Cells for Renal Ischemia/Reperfusion Injury
In vitro hypoxic preconditioning (HP) of mesenchymal stem cells (MSCs) could ameliorate their viability and tissue repair capabilities after transplantation into the injured tissue through yet undefined mechanisms. There is also experimental evidence that HP enhances the expression of both stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, which are involved in migration and survival ...
متن کاملSDF-1 Promotes Endochondral Bone Repair during Fracture Healing at the Traumatic Brain Injury Condition
PURPOSES The objective of this study was to investigate the role of stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, on bone healing and whether SDF-1 contributes to accelerating bone repair in traumatic brain injury (TBI)/fracture model. MATERIALS AND METHODS Real-time polymerase chain reaction and immunohistochemical analysis were used to detect the expression of SDF-1 during ...
متن کاملUltrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study
Mesenchymal stem cell (MSC) therapy shows considerable promise for the treatment of myocardial infarction (MI). However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD) has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism...
متن کاملImportance of the SDF-1:CXCR4 axis in myocardial repair.
Since the original descriptions of the role of stromal cell-derived factor (SDF)-1 in recruiting bone marrow derived stem cells to the sites of vascular1 and myocardial injury,2 there has been increasing evidence of the broader importance of the SDF-1:CXCR4 axis in regulating myocardial repair following ischemic injury.2–6 In this issue of Circulation Research, Tang et al investigate the role o...
متن کامل